Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Photosynth Res ; 142(2): 229-240, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31302832

RESUMO

Mitochondria-targeted antioxidants (also known as 'Skulachev Ions' electrophoretically accumulated by mitochondria) exert anti-ageing and ROS-protecting effects well documented in animal and human cells. However, their effects on chloroplast in photosynthetic cells and corresponding mechanisms are scarcely known. For the first time, we describe a dramatic quenching effect of (10-(6-plastoquinonyl)decyl triphenylphosphonium (SkQ1) on chlorophyll fluorescence, apparently mediated by redox interaction of SkQ1 with Mn cluster in Photosystem II (PSII) of chlorophyte microalga Chlorella vulgaris and disabling the oxygen-evolving complex (OEC). Microalgal cells displayed a vigorous uptake of SkQ1 which internal concentration built up to a very high level. Using optical and EPR spectroscopy, as well as electron donors and in silico molecular simulation techniques, we found that SkQ1 molecule can interact with Mn atoms of the OEC in PSII. This stops water splitting giving rise to potent quencher(s), e.g. oxidized reaction centre of PSII. Other components of the photosynthetic apparatus proved to be mostly intact. This effect of the Skulachev ions might help to develop in vivo models of photosynthetic cells with impaired OEC function but essentially intact otherwise. The observed phenomenon suggests that SkQ1 can be applied to study stress-induced damages to OEC in photosynthetic organisms.


Assuntos
Antioxidantes/metabolismo , Manganês/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Cátions , Chlorella vulgaris/efeitos dos fármacos , Chlorella vulgaris/metabolismo , Clorofila/metabolismo , Fluorescência , Interações Hidrofóbicas e Hidrofílicas , Cinética , Luz , Simulação de Acoplamento Molecular , Oxigênio/metabolismo , Plastoquinona/análogos & derivados , Plastoquinona/farmacologia
2.
Springerplus ; 4: 453, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26322259

RESUMO

The yeast cell wall is constantly remodeled to enable cell growth and division. In this study, we describe a novel type of cell wall modification. We report that the drug amiodarone induces rapid channel formation within the cell wall of the yeast Hansenula polymorpha. Light microscopy shows that shortly after adding amiodarone, spherical structures, which can be stained with DNA binding dyes, form on the cell surface. Electron microphotographs show that amiodarone induces the formation of channels 50-80 nm in diameter in the cell wall that appear to be filled with intracellular material. Using fluorescent microscopy, we demonstrate MitoTracker-positive DNA-containing structures visibly extruded from the cells through these channels. We speculate that the observed channel formation acts to enable the secretion of mitochondrial material from the cell under stressful conditions, thus enabling adaptive changes to the extracellular environment.

3.
Prion ; 7(2): 175-84, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23208381

RESUMO

The pH-dependence of the ability of Bgl2p to form fibrils was studied using synthetic peptides with potential amyloidogenic determinants (PADs) predicted in the Bgl2p sequence. Three PADs, FTIFVGV, SWNVLVA and NAFS, were selected on the basis of combination of computational algorithms. Peptides AEGFTIFVGV, VDSWNVLVAG and VMANAFSYWQ, containing these PADs, were synthesized. It was demonstrated that these peptides had an ability to fibrillate at pH values from 3.2 to 5.0. The PAD-containing peptides, except for VDSWNVLVAG, could fibrillate also at pH values from pH 5.0 to 7.6. We supposed that the ability of Bgl2p to form fibrils most likely depended on the coordination of fibrillation activity of the PAD-containing areas and Bgl2p could fibrillate at mild acid and neutral pH values and lose the ability to fibrillate with the increasing of pH values. It was demonstrated that Bgl2p was able to fibrillate at pH value 5.0, to form fibrils of various morphology at neutral pH values and lost the fibrillation ability at pH value 7.6. The results obtained allowed us to suggest a new simple approach for the isolation of Bgl2p from Saccharomyces cerevisiae cell wall.


Assuntos
Amiloide/metabolismo , Glucana Endo-1,3-beta-D-Glucosidase/metabolismo , Glicosiltransferases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Algoritmos , Sequência de Aminoácidos , Amiloide/química , Amiloide/ultraestrutura , Parede Celular/química , Parede Celular/enzimologia , Glucana Endo-1,3-beta-D-Glucosidase/química , Glicosiltransferases/química , Concentração de Íons de Hidrogênio , Cinética , Microscopia de Fluorescência , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/química
4.
Prion ; 2(2): 91-6, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19098439

RESUMO

Glucantransferase Bgl2p is a major conserved cell wall constituent described for a wide range of yeast species. In the baker's yeast Saccharomyces cerevisiae it is the only non-covalently bound cell wall protein that cannot be released from cell walls by sequential SDS and trypsin treatment. It contains seven amyloidogenic determinants. Circular dichroism analysis and fluorescence spectroscopy with thioflavin T indicate the presence of beta-sheet structures in Bgl2p isolates. Bgl2p forms fibrils, a process that is enforced in the presence of other cell wall components. Thus the data obtained is the first evidence for amyloid-like properties of yeast cell wall protein-glucantransferase Bgl2p.


Assuntos
Amiloide/química , Parede Celular/enzimologia , Glucana Endo-1,3-beta-D-Glucosidase/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...